Influence of Adsorbed CH₃O on CO Desorption from Ni/Al₂O₃

RAYMOND L. FLESNER AND JOHN L. FALCONER

Department of Chemical Engineering, University of Colorado, Boulder, Colorado 80309-0424

Received June 24, 1991

The desorption rate of CO from the Ni surface of a 5.1% Ni/Al₂O₃ catalyst was significantly increased by the presence of CH₃O on the support. The CH₃O was formed by CO and H₂ coadsorption at 385 K. Reverse spillover of CH₃O, as CO desorbed, maintained the Ni surface at a high coverage of CO and H₂. This increased the rate of CO desorption because of the repulsive interactions present between CO molecules on Ni at high coverages and because readsorption on Ni was decreased. These studies show that CH₃O must undergo reverse spillover onto the Ni surface in order to decompose. Decomposition directly on the Al₂O₃ surface does not occur at these temperatures. Carbon isotope labeling and temperature-programmed desorption were used to study this process. For hydrogen isotope labeling, a kinetic isotope effect for CH₃O decomposition indicated that C–H bond breaking or surface diffusion limited CH₃O decomposition. Oxygen isotope labeling showed that the carbon–oxygen bond did not break upon the formation or decomposition of CH₃O. © 1992 Academic Press, Inc.

INTRODUCTION

Temperature-programmed reaction (TPR) of adsorbed CO in flowing H_2 has shown that two distinct methanation sites are present on Ni/Al₂O₃ catalysts (1-3). The more reactive sites were shown to be due to hydrogenation of CO adsorbed on Ni, and the less reactive sites were attributed to a CH₃O species adsorbed on the Al₂O₃ support. The CH₃O species formed by a spillover process in which CO first adsorbed on the Ni surface. A H:CO ratio near three during temperature-programmed desorption (TPD), following coadsorption of CO and H₂ at 385 K, indicated that at saturation the majority of the adsorbed CO was present as CH_3O (4). In addition, infrared studies have detected a CH₃O species on a Pt/Al₂O₃ catalyst under the same conditions, and the CH_3O hydrogenated to CH_4 at a different rate than CO adsorbed on Pt (5). Infrared spectroscopy has also detected a formate species on the Al₂O₃ support of metal catalysts in the presence of H_2 and CO at elevated temperatures (5-10), but this was the least reactive species on Pt/Al_2O_3 (5). Also, TPD of formic acid adsorbed on Ni/Al₂O₃ (11) gave spectra that were quite different from those obtained for coadsorbed CO and H_2 . In contrast, TPD of CH₃OH adsorbed on Ni/Al₂O₃ (12), Pt/Al₂O₃ (13), and Pt/TiO₂ (14) gave CO and H₂ spectra that were quite similar to those observed for coadsorbed CO and H₂. Thus, the species adsorbed on Al₂O₃ under the conditions of our experiments is concluded to be CH₃O. Experiments on physical mixtures of Al₂O₃ and supported Ni catalysts showed directly that the CH₃O was adsorbed on the Al₂O₃ surface (15).

The CH₃O formed by a spillover process from Ni to Al₂O₃. The reverse process, in which CH₃O transferred from Al₂O₃ back to Ni, where it decomposed, was also observed (12). In that study, the rate of reverse spillover was measured by isothermal treatments in He. Gas phase H₂ appeared to inhibit this reverse spillover.

In the present study, the properties of adsorbed CH₃O and its influence on CO desorption from Ni were studied on a 5.1% Ni/Al₂O₃ catalyst. The CH₃O was created by coadsorption of CO and H₂ at 385 K. These studies show that CH₃O undergoes reverse spillover during TPD, and thus CH₃O affected the desorption of CO from Ni. Isotope labeling (13 C, 18 O, D) was used to study adsorbed CH₃O and its reverse spillover.

Some of the objectives of the present study were to determine:

• How CO desorption from Ni changes as CH_3O coverage on Al_2O_3 increases. Glugla *et al.* (4) observed that CO desorption from Ni was significantly modified when CH_3O was on the Al_2O_3 support. Carbon monoxide adsorbed on Ni was labeled with ¹³C to distinguish it from the products of ¹²CH₃O decomposition.

• The rate of CH_3O decomposition as a function of coverage. The coverage was varied by taking advantage of the activated formation of CH_3O .

• Whether CH_3O decomposes on Al_2O_3 or undergoes reverse spillover in order to decompose.

• If the CO bond remains intact when CH_3O forms and decomposes. Adsorption of $C^{18}O$ was used to follow dissociation.

• If a kinetic isotope effect was present when D was substituted for H in CH_3O .

EXPERIMENTAL METHODS

Temperature-programmed desorption (TPD) and reaction (TPR) experiments were carried out on a 5.1% Ni/Al₂O₃ catalyst. The flow and detection system has been described previously (16, 17). Briefly, a 100mg sample of reduced and passivated catalyst was placed in a 1-cm OD tubular quartz downflow reactor, which was heated by a temperature-programmed electric furnace. A 0.5-mm OD, chromel-alumel thermocouple, placed in the center of the catalyst bed, measured catalyst temperature and provided feedback to the temperature programmer. The catalyst was pretreated at 773 K in H_2 flow (100 standard cm³/min) for 2 h. Carbon monoxide was then adsorbed at 300 or 385 K by injecting 150 µl (STP) pulses of a 10% CO/He mixture into the H₂ carrier gas with a pulse valve. When ¹³CO or C¹⁸O was used, 50 μ l (STP) pulses of the pure gas were injected into the H₂ carrier gas. Note that

exposure times for ¹³CO and C¹⁸O adsorption cannot be directly related to those for ¹²C¹⁶O adsorption because the partial pressures and the pulse volumes are different.

To obtain TPD spectra of coadsorbed CO and H_2 , the catalyst was cooled to 300 K after adsorption was complete, and at 300 K the carrier gas was switched to He. The catalyst temperature was then raised at 1 K/s in ambient pressure He flow (115 standard cm³/min) to 775–825 K. Species leaving the catalyst surface were detected immediately downstream of the reactor by a computer-controlled, UTI quadrupole mass spectrometer. This system allowed the catalyst temperature and multiple mass peaks to be detected simultaneously.

For some TPD experiments, ¹²CO was adsorbed at 385 K in H_2 flow and ¹³CO was then adsorbed at 300 K in H₂ flow. Gasphase CO readily displaces CO adsorbed on Ni at 300 K (12, 18, 19), but gas-phase CO does not exchange with adsorbed CH₃O (12). Advantage was taken of this displacement to distinguish CO adsorbed on Ni from that present on the support as CH₃O. After some TPD experiments, the catalyst was cooled in He, the carrier flow was switched to H_2 , and a TPR experiment was carried out by raising the catalyst temperature at 1 K/s in H_2 flow. The amount of CH_4 formed was measured to determine the amount of surface carbon deposited by CO disproportionation or dissociation.

For some experiments, CO was adsorbed in D_2 flow (80 standard cm³/min) instead of H_2 flow to form CD₃O. In those cases, Ar carrier gas (100 standard cm³/min) was used instead of He during TPD so that a D_2 signal at mass 4 could be detected. Mass signals at 2(H₂), 3(HD), and 4(D₂) were recorded in addition to those for CO, CO₂, and CH₄. Calibrations were done by injecting known volumes of pure gases. The calibration for HD was taken as the average of those for D₂ and H₂.

The 5.1% Ni/Al₂O₃ catalyst was prepared by impregnation to incipient wetness of Kaiser A-201 alumina (220 m²/g) with aque-

FIG. 1. Hydrogen and CO spectra from TPD of CO adsorbed at 385 K in H_2 flow on a 5% Ni/Al₂O₃ catalyst. Adsorption times are indicated in min.

ous nickel nitrate hydrate. The impregnated Al_2O_3 was dried in vacuum and then directly reduced in H_2 using procedures described previously (1). The final reduction temperature was 775 K. The weight loading was measured by atomic absorption. The metal surface area was measured to be 1.4 m²/g catalyst. The sample was used as a 60–80 mesh powder.

RESULTS

Temperature Programmed Desorption

Initial coverage variation. As reported previously (4), when CO and H_2 are coadsorbed at high coverages on Ni/Al₂O₃ catalysts by adsorption at elevated temperatures, their desorption spectra are quite similar. Since previous studies were only done at high exposure, a range of CO exposures in H_2 flow at 385 K were used to obtain the TPD spectra in Figs. 1 and 2. Note that two distinct peaks are observed for desorption. Over the entire range of exposures, the H_2 and CO desorption spectra are quite similar and are significantly different from the desorption spectra obtained when H_2 and CO are adsorbed individually. As shown in Figs. 1 and 2, the spectra are also different from those obtained when H_2 and CO are coadsorbed at 300 K; the zero-min label means CO was adsorbed at 300 K for 10 min in H_2 flow after the catalyst was cooled in H_2 from 775 K, but no adsorption was carried out at 385 K. A 60-min exposure at 385 K is close to saturation coverage on the 5.1% Ni/Al₂O₃ catalyst. The two spectra for 60-min exposure were obtained on different days and demonstrate reproducibility.

At low CO exposures, the majority of the CO and H_2 desorbed above 600 K, but as shown in Fig. 3, for exposures longer than 5 min the amounts in the high-temperature peaks did not increase much. Instead, at higher exposure, most of the CO and H_2 desorbed between 425 and 600 K, and the H_2 and CO spectra had similar shapes. As indicated by the different rate scales in Fig. 1, more H_2 than CO formed. Some differences between the H_2 and CO spectra in Fig. 1 are:

(i) Carbon monoxide desorption was complete by 800 K, but H_2 desorption was not.

FIG. 2. Carbon dioxide and CH_4 spectra from TPD of CO adsorbed at 385 K in H_2 flow on a 5% Ni/Al₂O₃ catalyst. Adsorption times are indicated in min.

(ii) The CO desorption peak between 425 and 600 K was slightly broader than the H_2 peak (75 versus 70 K half-width).

(iii) A small amount of H_2 desorbed between 300 and 425 K, but CO did not desorb in this range.

(iv) The CO peak temperature was higher than the H_2 peak temperature at each exposure.

With increased coverage, the peak temperature of the low-temperature H_2 peak increased while that of the low-temperature CO peak decreased, as shown in Fig. 4. The CO and H_2 peak temperatures differ by 60 K at low coverage but by only 6 K at high coverage. Most of the change in peak temperature occurred at low coverages. At high coverages, the CO peak was at 527 \pm 2 K and the H_2 peak was at 521 \pm 1 K. For the high-temperature peaks, the H_2 and CO peak temperatures were almost identical at each coverage, and the peak temperatures decreased as coverage increased.

The H/CO ratio (determined from areas under the curves in Fig. 1) exhibited scatter, but as shown in Fig. 3, the H/CO ratio for exposures greater than 5 min is approximately 3.4 for the low-temperature peaks and 3.2 for the high-temperature peaks. The overlap of the low- and high-temperature peaks at higher exposures made determination of the amounts in each peak less accurate. Repeat experiments for 60-min exposure yielded similar H₂ amounts (353 and 364 μ mol/g catalyst) and CO amounts (232 and 208 μ mol/g catalyst), but the scatter was amplified in the H : CO ratio (3.0 and 3.4) for the low-temperature peak.

Carbon dioxide and CH_4 also formed during TPD, but their amounts were less than one-tenth that of CO desorption. As shown in Fig. 2, most of the CO₂ desorbed in a peak at 670 K for CO adsorption at 385 K, and the CO₂ amount increased more slowly with exposure than did CO and H₂ (Fig. 3). Most of the CH₄ desorbed in a peak at 546 K. The amount of CH₄ product increased much faster than CO₂ as exposure time increased (Fig. 3). Note that expanded temperature and rate scales (relative to Fig. 1) were used in Fig. 2.

Coadsorption of ¹³*CO and* ¹²*CO*. As described in the experimental section, ¹³CO

FIG. 3. Hydrogen and CO amounts for the high- and low-temperature TPD peaks and CO_2 and CH_4 total amounts versus CO exposure time. Data are from Figs. 1 and 2. The CO amounts were multiplied by 1.6 (high-temperature peak) and 1.7 (low-temperature peak) so that the H₂ and CO signals for these peaks fell on the same curve.

was adsorbed on Ni and ${}^{12}CH_3O$ on Al_2O_3 by first adsorbing ${}^{12}CO$ in H_2 flow at 385 K. The resulting ${}^{12}CO$ on Ni was then displaced by ${}^{13}CO$ by exchange at 300 K; the ${}^{12}CH_3O$ that formed on the Al_2O_3 did not exchange. Figure 5 shows the resulting ¹²CO and ¹³CO TPD spectra for several ¹²CH₃O coverages. The most significant result from these experiments is that ¹³CO desorption from Ni changed significantly as the ¹²CH₃O cover-

FIG. 4. Hydrogen and CO peak temperatures versus CO quantities in the low-temperature peak for TPD of CO adsorbed in H_2 . Data are from Fig. 1.

FIG. 5. TPD spectra of ¹²CO and ¹³CO following a sequence of ¹²CO adsorption in H₂ at 385 K and ¹³CO adsorption in H₂ at 300 K for 10 min. The times (min) are indicated for ¹²CO adsorption at 385 K.

age on Al_2O_3 increased. The amplitude of the high-temperature ¹³CO peak decreased significantly, while that of the low-temperature ¹³CO peak increased. The peak temperature of the low-temperature ¹³CO peak also decreased from 547 to 487 K as the ¹²CH₃O coverage increased.

The ${}^{13}CO_2$ amount *decreased* and the ${}^{12}CO_2$ amount increased as the ${}^{12}CH_3O$ coverage increased, as shown in Table 1. The

carbon-containing species that remained following TPD were removed by reaction with H₂ during TPR. This was carried out immediately after TPD, and the amounts of ¹³CH₄ and ¹²CH₄ that formed are presented in Table 1. Both ¹³CH₄ and ¹²CH₄ started forming below 400 K; methanation at this low temperature is indicative of carbon hydrogenation (*16*, 20). As the ¹²CH₃O coverage increased, less carbon deposited on the

¹² CO Exposure Time ^{<i>a</i>} (min)	Total amounts desorbed (µmol/g cat)						
	TPD		TPR	TPD			TPR
	¹³ CO	¹³ CO ₂	¹³ CH ₄ ^b	¹² CO	¹² CO ₂	$^{12}CH_4$	¹² CH ₄ ^b
0	27	7	4				
5	30	3	7	33	4	1	3
10	26	2	0	60	6	4	<1
60	34	0	0	173	17	15	0

TABLE 1Desorption Quantities for TPD of Coadsorbed ¹²CO, ¹³CO, and H₂

 a ¹²CO was adsorbed at 385 K in H₂ flow, and then the catalyst was exposed to ¹³CO for 10 min at 300 K.

^b Methane formed from TPR of surface carbon that remained after TPD.

Ni surface during TPD, and for high ${}^{12}CH_3O$ coverage no ${}^{13}C$ deposited from the ${}^{13}CO$ adsorbed on Ni.

Both the ${}^{13}CO_2$ and the ${}^{13}CH_4$ amounts in Table 1 show that less ¹³CO dissociated to carbon and oxygen as the ¹²CH₃O coverage increased. The decrease in the amplitude of the ¹³CO peak near 700 K is also indicative of less ¹³CO dissociation, since this peak has been attributed to recombination of carbon and oxygen (21). The total amount of ¹³C leaving the surface (as ¹³CO and ¹³CO₂ during TPD and ¹³CH₄ during TPR) was approximately constant at $34 \pm 6 \,\mu$ mol/g catalyst, independent of the ¹²CH₃O coverage. Since ¹³CO was only adsorbed on Ni, the ¹³CO coverage was not expected to change as the ¹²CH₃O coverage changed. For 5 min of ¹²CO exposure the ¹³CO and ¹²CO peak temperatures (low-temperature peaks) were 547 and 588, respectively. For 60 min of ¹²CO exposure they both decreased, to 487 and 529 K, respectively. The ¹³CO desorption also started at much lower temperatures (300-350 K) than ¹²CO desorption (425-475 K) for all coverages. The sum of the ${}^{12}CO$ and ¹³CO signals in Fig. 5 yield the same spectra as the corresponding ¹²CO spectra in Fig. 1. The H₂ spectra that were recorded during the experiments of Fig. 5 were also the same as those in Fig. 1.

 $C^{18}O$ adsorption. To follow the pathway of oxygen atoms in adsorbed CO and CH₃O, C¹⁸O was adsorbed and TPD experiments were carried out at several CH₃¹⁸O coverages. Figure 6a shows the TPD spectra for C¹⁸O adsorption at 300 K in H₂ flow. As observed in Fig. 1, CO and H₂ desorbed over the entire temperature range. Below 600 K, 59% of the desorbing CO was $C^{18}O$, but above 600 K only 14% of the CO was $C^{18}O.$ Most (91%) of the CO_2 was $C^{16}O_2$, and no ¹⁸O₂ was detected. Thus, though the adsorbed C¹⁸O was 97% labeled with ¹⁸O, 73% of oxygen in the desorbed products was ¹⁶O. These spectra are similar to those observed previously for Ni/Al₂O₃ (22, 23) and Ni/TiO₂ (24). Carbon monoxide adsorbed on Ni dissociates at elevated temperatures, and

the resulting oxygen can apparently readily exchange with ¹⁶O from the support. The CO_2 that forms as a result of disproportionation can also exchange oxygen with the support.

Figure 6b shows TPD spectra for two coverages of CH₃¹⁸O: 10 min of C¹⁸O exposure in H₂ flow at 385 K (dashed lines) and 30 min of C¹⁸O exposure in H₂ flow at 385 K (solid lines). Note that in addition to forming CH₃¹⁸O, C¹⁸O was adsorbed on Ni for these experiments. For both experiments, the majority of the C¹⁸O below 600 K was $C^{18}O$, but the majority above 600 K was C¹⁶O, and no C¹⁸O₂ was detected. A small amount of C18O16O was observed, but for clarity the C¹⁸O¹⁶O spectra are not presented in Fig. 6b. The percentage of the total CO desorption that was labeled with ¹⁸O increased from 49 to 63% as the C18O exposure increased. That is, the majority of CH₃¹⁸O yielded C¹⁸O upon decomposition. Thus, the CO bond does not appear to break to form CH₃O or when CH₃O decomposes. However, exchange occurs at the higher temperatures. The CO₂ that forms exchanges with Al₂O₃ more readily than does CO.

In a variation of these experiments, ¹²C¹⁸O was adsorbed in H₂ flow at 385 K for 10 min and the catalyst was then exposed to ${}^{13}C^{16}O$ at 300 K for 10 min. That is, ¹²CH₃¹⁸O was formed on Al₂O₃ and ¹³C¹⁶O was adsorbed on Ni. Figure 7 shows that for this low CH₃O coverage, less than half the CO that results from CH₃O decomposition is labeled with ¹⁸O. The ¹³C¹⁶O from Ni desorbs at lower temperatures than ¹²C¹⁸O, and the hightemperature CO (which is shown to be mostly from the ¹²CH₃¹⁸O decomposition) is labeled with ¹⁶O. Most of the CO_2 is from $^{12}CH_3^{18}O$, but the oxygen in $^{12}C_3^{18}O_2$ exchanges with the support. Note that some exchange occurred between 13C16O and $^{12}CH_3^{18}O$ during TPD to form $^{13}C_3^{18}O$.

CO and D_2 coadsorption. To determine how much of the H₂ observed during TPD was from H₂ coadsorbed with CO and Ni rather than from CH₃O decomposition, D_2

FIG. 6. Carbon monoxide and CO₂ spectra from TPD following (a) $C^{18}O$ adsorption in H₂ at 300 K for 10 min and (b) $C^{18}O$ adsorption in H₂ at 385 K for 10 min (dashed lines) and 30 min (solid lines).

was exchanged with adsorbed H_2 on Ni after CH₃O was formed on Al₂O₃. For this experiment ¹²CO was adsorbed in H₂ flow at 385 K for 30 min, and the catalyst was then exposed to ¹³CO in D₂ flow for 10 min at 300 K. During the subsequent TPD in Ar flow (Fig. 8), the H₂ and ¹²CO from ¹²CH₃O decomposition were similar to those observed previously, but less H₂ desorbed below 425 K. A small amount of D₂ desorbed between 300 and 400 K, and no HD was detected. Thus, the H₂ that desorbs below 400 K in Fig. 1 can be associated with H₂ from Ni, but apparently almost all the H₂ above 400 K is from CH₃O decomposition.

To determine if a kinetic isotope effect exists for methoxy decomposition, ${}^{12}CD_3O$ was formed by ${}^{12}CO$ adsorption in D₂ flow at 385 K (the catalyst was cooled in D₂ flow from 775 K prior to adsorption). The catalyst was then exposed to ${}^{13}CO$ in H₂ flow at 300 K to replace ${}^{12}CO$ and D₂ adsorbed on Ni. The resulting D₂ and ${}^{12}CO$ desorption peaks were similar to the H₂ and ${}^{12}CO$ peaks in Fig. 8, but the peak temperatures were higher (7 K for ${}^{12}CO$, 10 K for D₂). That is, CD_3O decomposed more slowly than CH_3O , apparently due to a kinetic isotope effect. No HD or H_2 desorption was detected.

An interesting aspect of this TPD experiment was that ¹³CO desorption from Ni was also changed when ¹²CD₃O was present instead of ¹²CH₃O on the Al₂O₃. The ¹³CO peak temperature was 9 K higher than the ¹³CO peak in Fig. 8. That is, ¹³CO desorbed more slowly from Ni when CD₃O instead of CH₃O was on the Al₂O₃.

DISCUSSION

In a study on Pd/La₂O₃–SiO₂ catalysts, Guo *et al.* (25) concluded that surface migration of adspecies was important in TPD performance. Similar to our observations, they showed that in the presence of adsorbed ¹³CH₃OH, the desorption peak temperature of ¹²CO decreased by 100–150 K. They related the enhancement of ¹²CO desorption to the decomposition of ¹³CH₃OH, which transferred from the support to the Pd. They stated that the interaction of ¹²CO and ¹³CO (that formed from ¹³CH₃OH decomposition) caused the lowering of the desorption tem-

FIG. 7. Carbon monoxide and CO₂ spectra from TPD following ${}^{12}C^{18}O$ adsorption in H₂ at 385 K for 10 min and subsequent adsorption of ${}^{13}C^{16}O$ in H₂ at 300 K for 10 min.

perature. They referred to this interaction as a dynamic ensemble mechanism in the desorption of CO at high surface coverage. A similar phenomena was reported by Tamaru and co-workers (26-28), who observed that isotopically labeled, gas-phase CO displaced adsorbed CO from polycrystalline surfaces in UHV. They referred to this process as adsorption-assisted desorption, and this is the same process employed in our experiments when adsorbed ¹²CO on Ni was exchanged by gas-phase ¹³CO at 300 K. Similarly, ultrahigh vacuum studies by Gland *et al.* (29–32) on single-crystal metal

FIG. 8. Hydrogen, D_2 , and CO TPD spectra following ¹²CO adsorption in H_2 at 385 K for 30 min and subsequent adsorption of ¹³CO in D_2 at 300 K for 10 min.

surfaces showed that gas-phase H_2 caused adsorbed CO to desorb at much lower temperatures than observed in the absence of gas-phase species.

The phenomena observed in these three sets of studies appear to be the same, and Gland et al. explained this phenomena as due to repulsive interactions between adsorbed species. In their studies, adsorbed H atoms, in equilibrium with gas-phase H_2 , created a higher effective coverage than that due to CO alone preadsorbed on Ni. Thus, the CO desorbed from Ni as if a higher CO coverage was present. As coverage increases, CO is more weakly adsorbed (18, 33-35), and they measured a desorption energy of 33 kJ/mol versus 126 kJ/mol for low coverage. The lowering of the desorption energy caused CO to desorb at a lower temperature than in the absence of H_2 .

In our TPD studies, the ¹²CH₃O species behaves in the same manner as gas phase H₂ in Gland *et al.*'s studies and gas phase CO in Tamaru *et al.*'s studies. The ¹²CH₃O creates a higher coverage of ¹²CO and H₂. Thus, as ¹³CO desorbs from Ni, ¹²CH₃O spills over from Al₂O₃ onto the Ni and maintains a high surface coverage so that ¹³CO continues to desorb at low temperatures. The ¹²CO also desorbs at lower temperatures as the ¹²CH₃O coverage increases. Thus, ¹³CO desorption from Ni depends dramatically on ¹²CH₃O coverage, as shown in Fig. 5.

In addition to repulsive interactions between adsorbed CO, and the CO and H₂ from CH₃O decomposition on the Ni surface of a Ni/Al₂O₃ catalyst, a second effect may also lower the desorption temperature of CO from Ni. During TPD, molecules desorb and then subsequently readsorb as they move through the catalyst bed. When the surface coverage of CO-on Ni is maintained high because of reverse spillover, adsorption sites are not available for CO readsorption and thus CO leaves the catalyst bed more rapidly. Both effects are probably responsible for the significant decrease in CO peak temperature as the CH₃O coverage increased.

As desorption decreased the CO coverage at higher temperature during TPD, the remaining CO was more strongly bound to Ni, and because of readsorption some CO remained on the Ni surface to sufficiently high temperature to dissociate and form CO₂ and carbon. Dissociation (or disproportionation) is observed for ¹³CO adsorbed on the Ni surface alone, but as the ¹²CH₃O coverage increased less ¹³CO₂ formed during TPD and less ¹³C was deposited on the surface (Table 1). At high ¹²CH₃O coverages, no ¹³CO dissociated and thus no ¹³CO₂ was detected. When most of the ¹²CH₃O had decomposed and the ¹²CO coverage on Ni was low, then readsorption kept ¹²CO on the surface to higher temperature so that some ¹²CO dissociated and was responsible for the ¹²CO peak above 600 K.

Figure 5 shows clearly that as the coverage of ¹²CH₃O increased (longer ¹²CO exposure time in H_2 at 385 K), much less ¹³CO (which is adsorbed on the Ni) desorbed above 600 K. When no ¹²CH₃O was present, the CO desorbs mostly at high temperatures (dashed curve in Fig. 1). That is, as the CH₃O coverage increased, the rate of reverse spillover increased so that the coverage on Ni remained high for a longer time, and thus ¹³CO desorbed at a lower temperature. Thus less ¹³CO desorbed above 600 K, and the low-temperature peak shifted to lower temperature. Moreover, the lowtemperature ¹²CO peak also shifted to lower temperature.

The similarity between our results for coadsorbed ¹³CO and ¹²CH₃O and those by Guo *et al.* (25) for coadsorbed ¹²CO and ¹³CH₃OH are another indication that ¹²CH₃O formed from ¹²CO and H₂ coadsorption, and that ¹²CH₃O had to undergo reverse spillover onto the Ni surface to decompose. That is, the CH₃O, which was formed on Al₂O₃ by spillover, did not decompose on Al₂O₃ at these temperatures. Indeed CH₃OH only decomposed above 600 K when adsorbed on Al₂O₃ that contained no Ni.

The data in Fig. 5 thus indicate that the CH_3O undergoes reverse spillover starting at 450 K for the high coverages of CH_3O .

The CH₃O apparently forms without a significant fraction of the CO dissociating, since the majority of the C¹⁸O that was used to form CH₃¹⁸O was observed in the desorbing CO. This also means that the carbon–oxygen bond did not break when CH₃O decomposed.

Another indication that reverse spillover controls the rate of CO desorption was obtained by forming ¹²CD₃O. The rate of ¹³CO desorption from Ni was slower when ¹²CD₃O (rather than ¹²CH₃O) was on Al₂O₃ because the spillover/decomposition process of ¹²CD₃O was slower. This meant that the ¹²CO and D₂ peak temperatures were higher than ¹²CO and H₂ peak temperatures from ¹²CH₃O decomposition, and *the* ¹³CO *peak was also at a higher temperature because it depended on the rate of CH*₃O spillover and decomposition.

At low CH₃O coverages the H₂ peak temperature is lower than that of CO; that is, H₂ desorbs more readily than CO following CH₃O decomposition. Apparently this occurs because H₂ is more weakly bound on Ni than is CO. The more rapid desorption of H₂ occurs only for low CH₃O coverages. At high CH₃O coverages, the peak temperatures of H₂ and CO are similar (Fig. 4). Thus, at low CH₃O coverages CO desorption appears to limit the rate of gas phase CO formation, but at higher coverages spillover or decomposition is limiting.

These studies show that CH₃O adsorbed on Al_2O_3 forms gas phase CO and H_2 by reverse spillover and decomposition on Ni so that the majority of the gas phase CO desorbed from a Ni surface at high coverage. However, this does not necessarily mean that CH₃O is hydrogenated during TPR by first undergoing reverse spillover, because the presence of gas phase H₂ significantly decreases the rate of reverse spillover of CH₃O (36). Indeed, CH₄ forms at higher temperature during TPR than CO desorbs during TPD. Moreover, during TPR, all the CO can be removed from the Ni without CH₃O moving back onto the Ni. As shown clearly by interrupted TPR (2, 12), the CH₃O remains intact on the Al₂O₃. Apparently H_2 prevents the reverse spillover that readily occurs during TPD.

CONCLUSIONS

A CH₃O species formed on the Al₂O₃ surface of Ni/Al₂O₃ from coadsorbed CO + H₂ by a spillover process. The following conclusions were made about the desorption and decomposition of CH₃O and CO adsorbed on Ni/Al₂O₃:

• CH₃O, adsorbed on Al₂O₃ of Ni/Al₂O₃, decomposes by first undergoing reverse spillover onto the Ni, and the CO and H₂ decomposition products desorb from the Ni surface.

• CO adsorbed on Ni desorbs much more rapidly when CH₃O is adsorbed on the support. The reverse spillover of CH₃O maintains a high surface coverage on Ni so that the CO is essentially desorbing from a surface with high coverage. This results in more weakly bound CO and also minimizes readsorption during TPD.

• The combined process of methoxy decomposition and CO + H_2 desorption exhibits a kinetic isotope effect; apparently, decomposition is limited by CH bond breaking or CH₃O diffusion.

• Methoxy both forms on Al_2O_3 and decomposes with the carbon-oxygen bond intact.

• The combination of TPD and C, H, and O isotope labeling is effective for understanding desorption from supported catalysts.

ACKNOWLEDGMENTS

We gratefully acknowledge support by the National Science Foundation, Grant CBT 86-16494. We are grateful to Dr. Keith B. Kester, Dr. Bishwajit Sen, Mr. Tian Fu Mao, and Mr. Baoshu Chen for many useful discussions, and to Dr. John M. Saber for his experimental assistance.

REFERENCES

- Kester, K. B., and Falconer, J. L., J. Catal. 89, 380 (1984).
- Glugla, P. G., Bailey, K. M., and Falconer, J. L., J. Phys. Chem. 92, 4474 (1988).
- 3. Sen, B., and Falconer, J. L., J. Catal. 117, 404 (1989).

- Glugla, P. G., Bailey, K. M., and Falconer, J. L., J. Catal. 115, 24 (1989).
- Robbins, J. L., and Marucchi-Soos, E., J. Phys. Chem. 93, 2885 (1989).
- Dalla-Betta, R. A., and Shelef, M., J. Catal. 48, 111 (1977).
- Solymosi, F., Bansagi, T., and Erdohelyi, A., J. Catal. 72, 166 (1981).
- Palazov, A., Kadinov, G., Bonev, C., and Shopov, D., J. Catal. 74, 44 (1982).
- Lu, Y., Xue, J., Li, X., Fu, G., and Zhang, D., Cuihua Xuebao (Chinese J. Catal.) 6, 116 (1985).
- 10. Mirodatos, C., Praliaud, H., and Primet, M., J. Catal. 107, 275 (1987).
- Strobel, M. A., M. S. Thesis, Univ. of Colorado, Department of Chemical Engineering, 1979.
- Chen, B., Falconer, J. L., and Chang, L., J. Catal. 127, 732 (1991).
- 13. Flesner, R. L., and Falconer, J. L., in preparation.
- 14. Mao, T.-F., and Falconer, J. L., J. Catal. **123**, 443 (1990).
- Sen, B., Falconer, J. L., Mao, T.-F., Xu, M., and Flesner, R. L., J. Catal. 126, 465 (1990).
- Falconer, J. L., and Schwarz, J. A., Catal. Rev. Sci. Eng. 25, 141 (1983).
- Schwarz, J. A., and Falconer, J. L., *Catal. Today* 7, 1 (1990).
- Yates, J. T., Jr., and Goodman, D. W., J. Phys. Chem. 73, 5371 (1980).
- Klier, K., Zettlemoyer, A. C., and Leidheiser, H., Jr., J. Phys. Chem. 52, 589 (1970).
- McCarty, J. G., and Wise, H., J. Catal. 57, 406 (1979).
- Lee, P.I., Schwarz, J. A., and Heydweiller, J. C., Chem. Eng. Sci. 40, 509 (1985).

- Bailey, K. M., Ph.D. dissertation, Univ. of Colorado, Department of Chemical Engineering, 1988.
- Galuszka, J., Chang, J. R., and Amenomiya, Y., J. Catal. 68, 172 (1981).
- Wilson, K. G., Ph.D. dissertation, Univ. of Colorado, Department of Chemical Engineering, 1987.
- Guo, X., Xu, Y., Zhai, R., Zhu, K., and Huang, J., Pure Appl. Chem. 60, 1307 (1988).
- 26. Tamaru, K., Yamada, T., Zhai, R., and Iwasawa, Y., in, "Proceedings of the 9th International Congress on Catalysis, Calgary, 1988" (M. J. Phillips and M. Ternan, Eds.), Vol. 3, p. 1006. Chemical Institute of Canada, Ottawa, 1988.
- Yamada, T., and Tamaru, K., Surf. Sci. 138, L155 (1984).
- Yamada, T., Onishi, T., and Tamaru, K., Surf. Sci. 133, 533 (1983).
- Parker, D. H., Fischer, D. A., Colbert, J., Koel, B. E., and Gland, J. L., *Surf. Sci.* 236, L372 (1990).
- Gland, J. L., Shen, S., Zaera, F., and Fischer, D. A., J. Vac. Sci. Technol. A 6, 2426 (1988).
- 31. Shen, S., Zaera, F., Fischer, D. A., and Gland, J. L., J. Chem. Phys. 89, 590 (1988).
- Parker, D. H., Fischer, D. A., Colbert, J., Koel, B. E., and Gland, J. L., submitted for publication.
- 33. Tracy, J. L., J. Chem. Phys. 56, 2736 (1972).
- 34. Falconer, J. L., and Madix, R. J., Surf. Sci. 45, 393 (1975).
- 35. Koel, B. E., Peebles, D. E., and White, J. M., Surf. Sci. 107, L367 (1981).
- 36. Sen, B., and Falconer, J. L., J. Catal. 125, 35 (1990).